Printed Pages - 14

337714 (37)

BE ($7^{\text {th }}$ Semester)

Examination, Nov.-Dec., 2021

Branch : Mechanical
OPERATIONS RESEARCH

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Attempt all the questions. Part (a) is compulsory
and attempt any two parts from each question.

Use of statistical tables permitted.
(2)
Q. 1. (a) Define linear programming. 2
(b) A certain farming organization operates
three farms of comparable productivity. The
output of each farm is limited both by the usable acrege and by the amount of water
available for irrigation. Following are the data for the upcoming season

Farm Usable Water available
Acreage in acre feet
$1 \quad 400 \quad 1,500$
$2 \quad 600 \quad 2,000$
$3 \quad 300 \quad 900$
The organization is considering three crops for planting which differ primarily in their expected profit per acre and in their consumption of water. Furthermore, the total acreage can be devoted to each of the crops is limited by the amount of harvesting equipment available.

Crop	Minimum	Water consumption	Expected
	Acreage	in acre feet/acre	profit/acre
A	700	5	Rs. 4,000
B	800	4	Rs. 3,000
C	300	3	Rs. 1,000

In order to maintain a uniform workload
among the farms, it is the policy of the organization that the percentage of the -
usable acreage planted must be the same at
each farm. However any combination of the crops may be grown at any of the farms.

The organization wishes to know how much
each of the crops may be planted at
the respective farms in order to maximize
the profit. Formulate this as a linear
programming problem.
(c) Solve the following LPP by graphical
method.

Objective function

$$
\text { Maximize, } \quad Z=8 x_{1}+6 x_{2}
$$

```
    subject to,
```

$$
\begin{gather*}
2 x_{1}+x_{2} \leq 1,000 \\
x_{1}+x_{2} \leq 800 \\
x_{1} \leq 400 \\
x_{2} \leq 700 \\
x_{1} \geq 0, \quad x_{2} \geq 0 \tag{9}
\end{gather*}
$$

(d) Solve the following LPP by simplex method

Maximize, $\quad Z=2 x_{1}+x_{2}-x_{3}+5 x_{4}$
subject to,

$$
\begin{align*}
& x_{1}+7 x_{2}+3 x_{3}+7 x_{4} \leq 46 \\
& 3 x_{1}-x_{2}+x_{3}+2 x_{4} \leq 8 \\
& 2 x_{1}+3 x_{2}-x_{3}+x_{4} \leq 10 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 \tag{9}
\end{align*}
$$

Q. 2. (a) What is an assignment problem ?

Write two examples of assignment
problem.
(b) List and explain the different methods of
getting initial basic feasible solution in
transportation method. 9
(c) A product is produced by four factories A, B, C, D. The unit production cost in them are Rs. 2, 3, 1 and 5 respectively. Their production capacities are factory $A \rightarrow 50$, $B-70, C-30$ and $D-50$ units. These factories supply the product to four stores, demands of which are $25,35,105$ and 20
(8)
units respectively. Unit transportation in
rupees from each factory to each store is
given below:

Determine the extent of deliveries from each
of the factories to each stores so that the
total production and transportation cost is
minimum.
9
(d) There are 5 jobs and $5 \mathrm{~m} / \mathrm{c}$. The associated
cost of allocating a job to the m / c is given in
table below:

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
	11	17	8	16	20
J_{1}	9	7	12	6	15
J_{3}	13	16	15	12	16
J_{4}	21	24	17	28	26
J_{5}	14	10	12	11	15

It is required to assign one job each of 5
machines. Determine the optimal assignment
of jobs, so that the total cost of processing
all jobs is minimized.
Q. 3. (a) Explain the meaning of a 'Queue' with
suitable examples.
2
(b) Explain the basic structure and different
elements of queueing system. y
(c) (i) Distinguish between PERT and CPM. 4
(ii) A project is expected to take 12 months
along the critical path, having standard
deviation of 4 months. What is the
probability of completing the project
within 10 months and 16 months.
5
(d) A small engineering project consists of six
activities. The three time estimates in
number of days for each activity are given
below. 9
e
Activity $\quad t_{0} \quad t_{m} \quad t_{p}$

$1-2$	2	5	8
$2-3$	2	3	4

3-5
3
6
18

$5-6$	7	7	7
$1-4$	3	3	3
$4-5$	2	8	14

P.T.O.
(i) Calculate the values of expected time

$$
\begin{aligned}
& \left(t_{e}\right) \text {, standard deviation }\left(\sigma_{t}\right) \text { and } \\
& \text { variance for each activity. }
\end{aligned}
$$

(ii) Draw the network.
(iii) Identify the critical path and mark on the network diagram.
Q. 4. (a) Explain why simulation is used?
(b) A bakery keeps stock of popular brand of cake. Previous experience shows that the daily demand pattern for the item with associated probabilities is given below :
(13)

Daily Demand :	0	10	20	30	40	50	
Probability	\therefore	0.01	0.2	0.15	0.5	0.12	0.02

Use the following sequence of random numbers to simulate for next 10 days. Also determine the average demand per day. 9
(c) Explain the following terms:
9
(i) Pure strategy
(ii) Mixed strategy
(iii). Saddle point
(iv) Pay off matrix
(v) Value of game
(d) Two companies are competing for the same
product. Their different strategies are given
in the following pay off matrix.

Company A

What are the best strategies for both the companies ? Find the value of game. 9

